

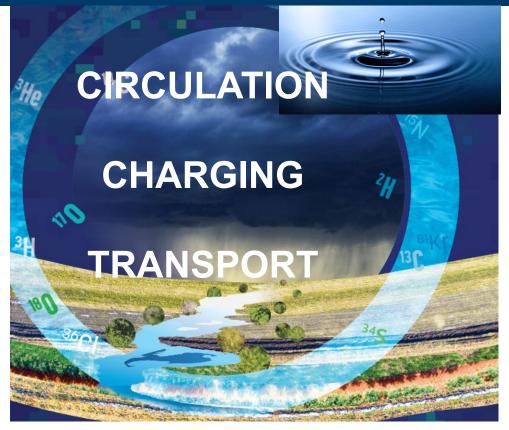
Energy and Sustainable Economic Development

Characterization and analysis of groundwater recharge through <u>tritium</u> measurements

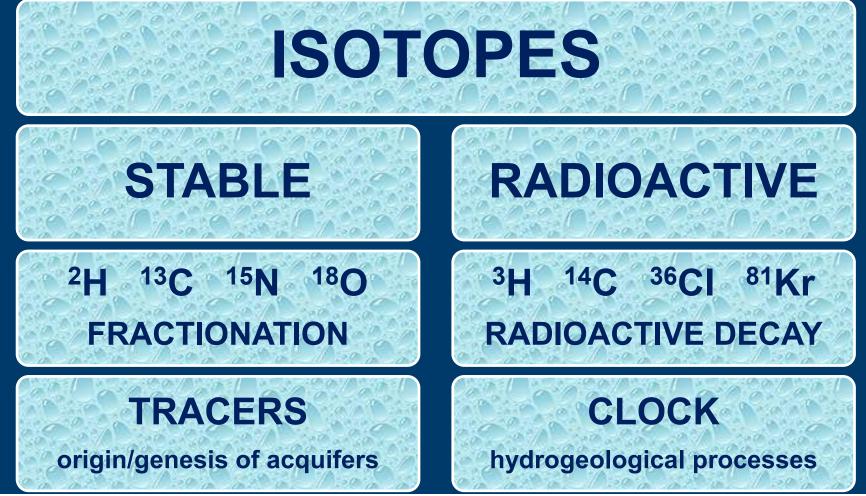
Ferrara Fiere, September, 24 2020

Chiara Telloli, Stefano Salvi, Antonietta Rizzo, Alberto Ubaldini

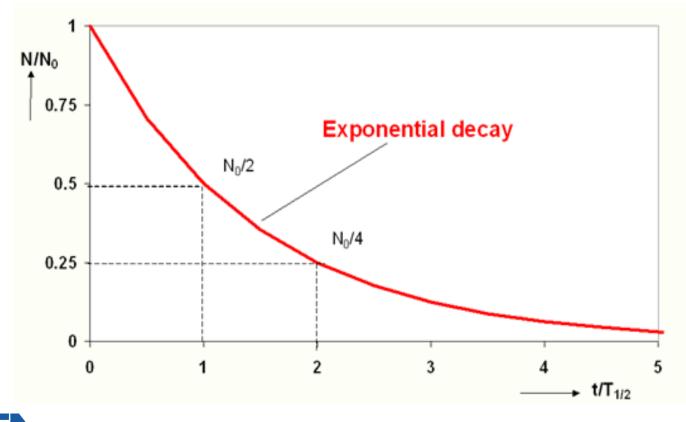
Methods and Techniques for Nuclear Safety, Monitoring and Traceability Laboratory (TNMT) Fusion and Technology for Nuclear Safety and Security Department (SICNUC) Nuclear Safety Security and Sustainability Division (FSN)

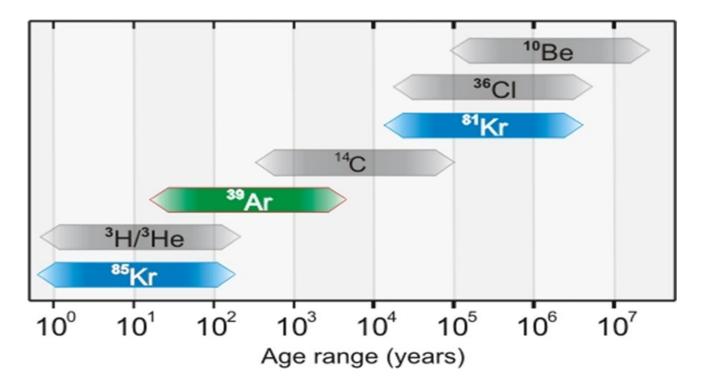

The key to good water management is knowledge: how much water we have, where it comes from, where it flows, what age

"young" water is easier to exploit it, "old" water is more precious and needs to be protected but young water is even more vulnerable


Isotopes around us

Hydrology studies the distribution and movements of groundwater and the influence that the geological environment has on their accumulation and circulation


Isotope hydrology uses stable and radioactive isotopes in water to trace its processes

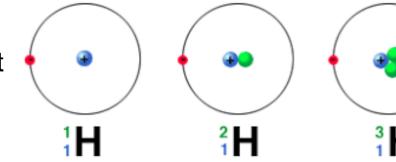


ENEL

Decay of radioactive isotopes

Radioactive isotopes - clock

The half-life is approximately 4500 days (12.3 years)


Remtech EXPO – September, 24 2020 – Chiara Telloli (ENEA Bologna)

Tritium (³H)

is an unstable isotope of the H element

which by emission of β -particles decays into a He atom (³He)

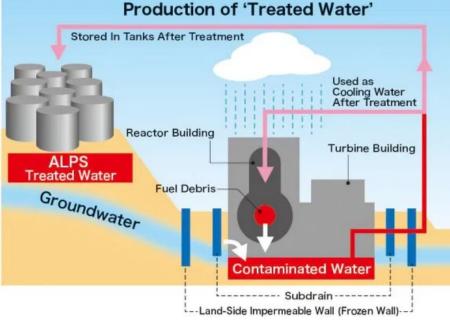
H-3 He-3

Tritium (³H)

It is an element mainly of cosmogenic origin:

it is generated naturally in the atmosphere by the interaction between cosmic ray and N or ²H present in the stratosphere and upper troposphere

$${}^{14}_{7}N + n \longrightarrow {}^{12}_{6}C + {}^{3}_{1}H$$
$${}^{2}_{1}H + {}^{2}_{1}H - {}^{3}_{1}H + {}^{1}_{1}H$$

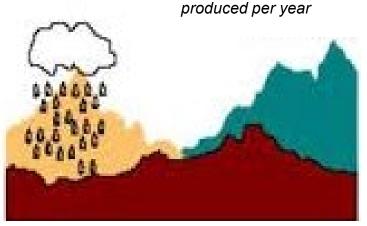

Tritium (³H) anthropogenic

Nuclear tests from 1952 to 1963 and nuclear power plants.

These events changed the geochemical footprint of rainfall with significant increases stopped with the international agreement (CTBT) that banned all nuclear tests.

https://www.ctbto.org/

neable Wal


Remtech EXPO – September, 24 2020 – Chiara Telloli (ENEA Bologna)

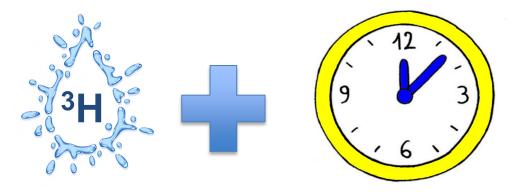
10

³H combined with O present in the air produced tritiated water (HTO) in the atmosphere

- greater molecular mass than H₂O molecule (³H is heavier than ¹H or ²H)
- shorter residence time in atmosphere because of precipitation.

World inventory of natural tritium from cosmic ray interactions is approximately 70 million curies

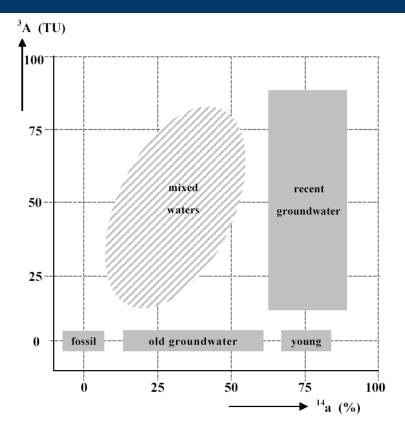
4 million curies (~ 0.41 kg)


Tritium (³H)

Tritium (³H)

The amount of ³H in surface and groundwater depends:

- on the amount of ³H in the atmosphere when precipitation is formed
- on the time it takes for the water to go from the surface to the groundwater


short periods of residence in atmosphere + short period of decay = ³H concentrations in rains are low and almost constant (~ 70 × 10⁶ Ci) (US Department of Energy 2002, Annual Report)

Tritium (³H)

The decay of ³H, e.g. in groundwater, produces its continuous loss which, in the absence of recharge (e.g. rainwater), causes a decrease.

BOMB PEAK

2000

³H RADIOACTIVE ¹⁴C ISOTOPES

TRITIUM IN PRECIPITATION

1990

2000

2010

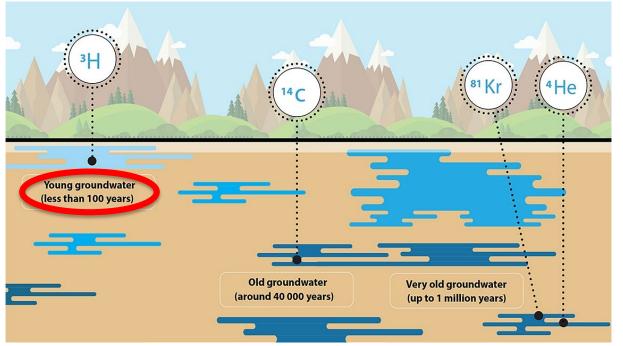
³H concentrations of natural origin in the precipitations are 0.1 ÷ 0.6 Bq/I

36**C**

³H in precipitation increased 1000 times in N hemisphere

1970

1980


1960

1950

Tritium (³H)

Due to the relatively short T1/2, groundwater <u>infiltrated before</u> <u>1950</u> does not contain ³H.

Analyzing the concentrations of ³H in groundwater it is possible to trace the age of the aquifer and / or define if the aquifer is polluted by anthropogenic activities.

Tritium (³H)

The analysis of these phenomena requires good capacity of HTO measurements in concentrations < d.l. (August, 2 2017 Decree)

This is possible only through a ³H enrichment procedure and analysis with low-level liquid scintillation spectrometer

Fusion and Technology for Nuclear Safety and Security Department

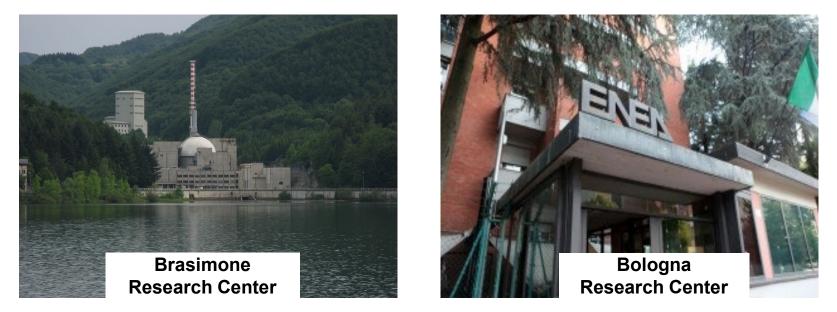
Nuclear Safety and Sustainability Division

Methods and Techniques for Nuclear Safety, Monitoring and Traceability Laboratory (TNMT)

RETE ALTA TECNOLOGIA E MILIA - ROMAGNA HIGH TECHNOLOGY NETWORK

TECNOPOLO

TRACEABILITY LABORATORY


www.tracciabilita.enea.it

Scientific Manager: Antonietta Rizzo

is at the forefront of the analysis of radioisotopes in the environment, including low-concentration of ³H analyses (ISO 9698:1989)

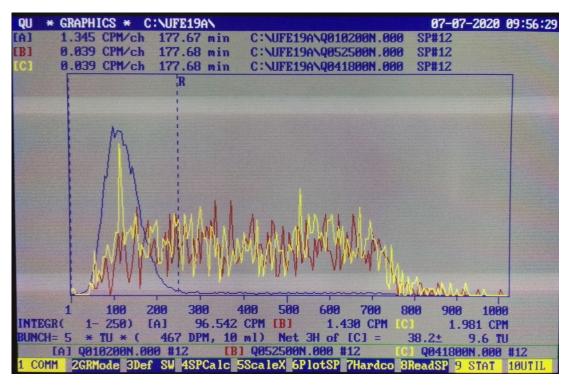
The laboratory is equipped with

- electrolysis system consisting of 20 steel cells
- cooling system
- DC power supply
- temperature control unit
- three multiple distillation batteries for tritium samples
- dryer for drying electrolytic cells
- Glassware

HTO sample mixed with scintillating liquid, so that the molecules excited by the radioactive emissions, returning to the stable level, emit by fluorescence a light radiation in the visible field.

- 3 trolleys each containing 20 vials and a sample elevator that lifts the vial and places it in the measuring chamber
- several studies indicate that **Teflon vials** give the best results in terms of sample storage, interference with measurement, quality/price ratio.

QUANTULUS low background instrument that allows to carry out analyzes even in non-underground laboratories (not shielded from naturally radiation) thanks to an active and a passive shielding



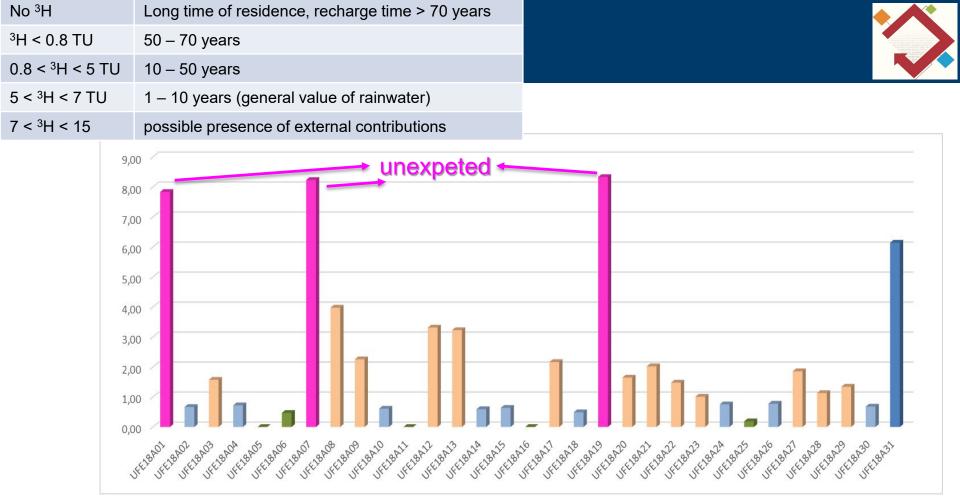
The amplitude of the electrical pulse is converted into a <u>digital value</u> for each of the channels

(multi-channel analyzer covering an energy range from 0 to 2000 KeV)

CPM vs channel (energy)

Dep. Physics and Earth Sciences, Ferrara University + ARPAV Treviso

determination and evaluation of the concentrations of ³H in groundwater samples in the south-area of Treviso


Treviso case study

³ H activity	Age estimated	Clark e Fritz (1997)
No ³ H	Long time of residence, recharge time > 70 years	
³ H < 0.8 TU	50 – 70 years	
0.8 < ³ H < 5 TU	10 – 50 years	1 TU = 1 ³ H atom for 10 ¹⁸ H atoms
5 < ³ H < 7 TU	1 – 10 years (general value of rainwater)	= 0.118 Bq/L
7 < ³ H < 15	possible presence of external contributions	
³ H > 15 TU	evidence presence of external contributions	

e.g. leachate from landfills hosting photoluminescent objects or from hospital wastewater or biological laboratories

ENEL

The samples show isotopic value in accordance with the <u>young age</u>of water recharge

- possible contributions of surface waters (climate change)
- differences in recharge, reflecting the change in permeability of gravelly sediments of High and Middle Plains compared to less permeable sediments of the transition area.

ISOTOPES AGE GENESIS RECHARGE SPEED VULNERABILITY

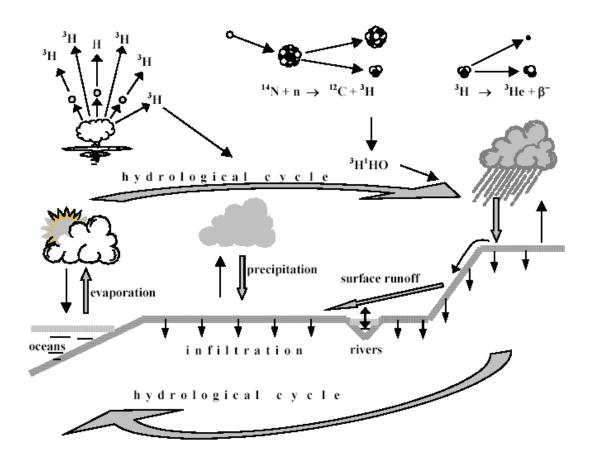
The study of ³H concentration in groundwater is a very useful tool for the determination of recent exchanges with surface water or the presence of recent anthropogenic contributions.

Chiara Telloli tel. + 39 051 6098 485 chiara.telloli@enea.it

August, 2 2017 Decree

standardized the health protection requirements from the presence of radioactive substances in the waters intended for human consumption defined by Legislative Decree 28/2016

Legislative Decree 31/2001


provides for the obligation to verify the value of two parameters relating to the radioactivity content in drinking water:

- the concentration of tritium (< 850 UT)
- the total indicative dose, related to ingestion (< 0.1 mSv / year)

trizio

		¹ H	² H	³ H
	Stabilità	stabile	stabile	radioattivo
	Abbondanza naturale	0.99985	0.00015	< 10 ⁻¹⁷
	Attività specifica nat.			< 1.2 Bq/L water
	Decadimento/figlio			$\beta^+/ {}^{3}\mathrm{He}$
	Tempo dimezz. (T/2)			12.320 ± 0.022 a
	Cost. decadimento			$5.576 \times 10^{-2} / a = 1 / 18.33 a^{-1}$
	(λ)			
	Max energia β			18 keV
	Abb. ciclo idrog.		250‰	Da 0 to 10 ⁻¹⁶
	Report		$^{2}\delta$, $\delta^{2}H$ o δD	³ A
	In		%0	TU, Bq/L H_2O
				$3H/1H = 10^{-18} (1 \text{ TU} = 0.118 \text{ Bq/L})$
ENE	Standard int.		VSMOW	NBS-SRM 4361
	valore assoluto		$^{2}\mathrm{H}^{/1}\mathrm{H} = 0.00015575$	${}^{3}\mathrm{H}/{}^{1}\mathrm{H} = 6600 \mathrm{TU}$