


Use of respirometry for chemical oxidising agent activator type and concentration selection for saturated hydrocarbon contaminated soils

Christina Makri

Thomas Aspray

What is ISCO?

- In situ chemical oxidation (ISCO) is an advanced remediation technique for hydrocarbon contaminated soil in the saturated zone.
- Examples of oxidising agents
 - Hydrogen peroxide
 - Ozone
 - Permanganate
 - Percarbonate
 - Persulfate
- Combined with one or more activator
- Selection based on contaminant degradation
 - E.g. Total Petroleum Hydrocarbon (TPH)
 - Destructive sampling
 - Impacted by sample heterogeneity (1-10 g samples)
 - Non-real time data
 - Cost

Persulfate for chemical oxidation

- Efficient and stable in the subsurface
- Generation of radical species (SO₄*-, HO*, and O₂-•)
- Activation methods
 - UV light
 - Heat
 - Activated carbon
 - Alkaline conditions
 - Transition metals (mainly Fe²⁺)
- Activation by natural soil components
 - Metals
 - Organic matter components (e.g. phenols and quinones)

Aim of project

Assess the suitability of using an automated respirometer for chemical oxidising agent treatability testing in saturated hydrocarbon contaminated soils.

Samples and characterisation

- ERS yard soil and clean general builder's sand
- Sieved and homogenised soil
- Diesel hexane spiking in batches

Matrix	pH _{H2O}	Moisture content (%)	Organic matter (%)	Concentration (mg/kg)		
				Fe (total)	Fe (3+)*	TPH (total)
Soil	9.3	23.4	0.1	50 000	< 0.4	~ 4 000
Sand	9.6	n/d	n/d	n/d	n/d	~ 4 000

Oxidation experiments

- Oxidising agents
 - Sodium persulfate (SPS) (≥ 98%, Acros Organics)
- Iron (Fe²⁺) activation
 - Iron (II) sulphate (Fisher Scientific)
- Alkaline activation
 - Sodium hydroxide (Acros Organics)

Experimental design

- Polypropylene tubs
- 50 g soil or sand
- Moisture adjustment
- Control samples soil/sand + water
- 2.0 g of SPS
- Activator
 - Iron Fe:SPS (1:100, 1:10, 1:1)
 - Alkaline pH > 10.5
- 4-6 treatments/control replicates
- Temperature control

Respirometry

Respicond automated respirometer

• Measurement of CO₂ production

 $HO^{\bullet} + SO_4^{\bullet-} + organics \rightarrow Reaction$ intermediates $+ CO_2 + H_2O + SO_4^{2-}$

 KOH traps with electrodes measuring change in conductance

CO₂ production recorded at one-hour intervals

Real-time observation of rection kinetics

- Capacity for 96 samples
- Sensors not damaged by high moisture conditions

Mineralisation of organics by persulfate

Iron activation assessment

Alkaline activation assessment

Kinetics of persulfate iron activation

Conclusions

 CO₂ mineralisation of organics can support chemical oxidation treatability testing

- Use of automated respirometer for chemical oxidation can support:
 - Matrix-specific assessment
 - Selection of activator type and concentration
- Potential to study kinetics of chemical oxidation reactions and mineralisation of organics

Thank you!

Christina Makri

cmakri248@gmail.com

in www.linkedin.com/in/christinamakri