

Natural clays of a coal tar contaminated site to stabilize hydrocarbons, reduce their ecotoxicity and make cement

N. Fatin Rouge, R. Bamze Attoumani, A. de Vaufleury, N. Crini

Circular economy: how to apply it in the context of EU Green Deal?

Context

Occurrence of coal tars contaminations

Industrial activities > 10% (Basol)

What do they contain?

Complex mixture of OCs \rightarrow Strong wetting ability

Hazardous compounds: PAHs, BTEX, phenols,... \rightarrow Hazards and persistency

Behavior

viscous

infiltration

volatilization

1 wk. later t_0

dissolution

 t_0

1 wk. later

punctua

Options of management

Hindered by dissemination risks, restrictive regulation on wastes, acceptance Incineration / disposal / confinement / stabilization-solidification

On-site and ex-situ management often require handling \rightarrow difficulties and risks

Context

Former steelwork industry in eastern Europe

Coal tar characteristics

Parameters	Values	Parameters	Values
pH	6.0	LHV ^a (kJ.kg ⁻¹)	37 478
Water content (%)	0.035	BTEX (mg.kg ⁻¹)	
Petroleum indices (mg.kg ⁻¹)		Benzene	2038 ± 864
C5-9	567 000	Toluene	2556 ± 956
C10-40	433 000	Ethylbenzene	204 ± 44
PAHs (mg.kg ²) Naphtalene (NAP)	84 250 ± 3278	Xylenes	3281 ± 556
Phenanthrene (PHE)	54 513 ± 1067	Sum of BTEX	8079 ± 229
Anthracene (ANT)	16 827 ± 3108	Metals (µg.kg-1)	
Fluoranthene (FLT)	16 675 ± 2977	Al	22.7 ± 4.1
Pyrene (PYR)	12 452 ± 2103	As	< 3.4
Benzo(a)anthracene (BaANT)	8453 ± 1642	Cd	< 1.4
Chrysene (CHYChy)	9472 ± 3497	Cu	18.7 ± 3.3
Benzo(b)fluoranthene (BbFLT)	3320 ± 842	Fe	80.9 ± 15.7
Benzo(k)fluoranthene (BkFLT)	5738 ± 931	Mn	515.2 ± 98.
Benzo(e)fluoranthene (BeFLT)	3179 ± 630	Ni	2.8 ± 1.0
Benzo(a)pyrene (BaPYR)	4262 ± 1119	Pb	7.5 ± 1.4
Indeno (1,2,3-c,d) pyrene (IcdPYR)	864 ± 145	Zn	25.3 ± 4.4
Sum of PAHs	221 000 ± 21 552	V	< 1.4

Strongly viscous, sticky and smelly

Assessing a strategy for handling and recycling

Could the use of natural local resources for S/S be a way for liquid tars management?

Results

Mass fraction of tar is critical for handling and contaminants mobility

Contaminants mobility of freshly prepared matrices

Results

Ecotox.: tar > S/S > S/S + aeration > S/S + incineration = no effect detected

Ageing with contaminant release \rightarrow SVOCs precipitation at the interface

Tar oil drop in water
(fresh and after deposition for 48 h)

Luthy, 1993

mass transfer impossible

tar lump

soil particle with tar oil

mass transfer possible

mass transfer possible

mass transfer impossible

tar oil drop

mass transfer possible

high viscosity

Results

Feasibility of recycling the stabilized tar in cement production?

Ecological and economical strategy

LHV of the coal tar

Short delay of treatment

But...

Low contaminants conc. thresholds ex: THCs and PAHs (~1 g/kg), metals

No smelly material

Dark color of produced cement

Learnt lesson: importance of early partnership and accurate knowledge of rules

Related article

Bamze Attoumani et al., 2019. Ecotox. & Environ. Safety

Thank to the Hunedoara city and Pr Bica's group (Bucharest Univ.) for support

THANKS FOR YOUR ATTENTION

Pr. Nicolas Fatin-Rouge

University of Poitiers - ENSIP 7 rue M. Doré 86000 Poitiers - France

Phone: +33 5 49 45 39 21

e-mail: nicolas.fatin.rouge@univ-poitiers.fr