

New Integrated Biochemical / Electrochemical Method for Remediation of Contaminated Ground Water

Troy Lizer troy.lizer@provectusenv.com

Electro Bioremediation, EBR® 22 September 2020

Why We Need A New ISCO Technology

- Longevity: Conventional ISCO amendments and means of generating reactive oxidant species (ROS) are limited by distribution, kinetics, and short environmental half-lives (10E⁻⁹ to 10E⁻⁶ seconds) = need to be continuously generated / applied.
- ISCO PRBs: PRB applications using existing ISCO (candles, KPS, etc.) are limited
- Sustained, In Situ Production of ROS could yield effective PRBs, especially for:
 - COIs not conducive to ISCR/ZVI such as 1,4-dioxane, MTBE/TBA, perchlorate plumes.
 - Deep aquifers
 - Challenging lithologies (clays, silt)

Provect-"EBR®" ISCO PRB

In Situ **ISCO Generator** to continuously produce Fenton's type ROS yields an effective PRB technology for:

- Challenging lithologies (deep aquifers, clayey soils, fractured rock)
- Situations where sorption/sequestration is not considered an effective response
- Alternatives to hydraulic containment (long term O&M)

Example Contaminant Concentration (mg/L)

What is Provect-"EBR®"

- ♦ H₂O₂ production
- ♦ Fe²⁺ release
- ♦ O₂ production

US Patent No. 9,975,156 B2

Computerized control panels for remote system / adjustment and realtime performance monitoring

US and EPC Patents

2 1 MAY 2019

European Patent Office 80296 MUNICH

Fax: +49 E9 2399 4465

Tel: +49 89 2399 0

Formaities Officer

Name: Comte, Catherine Tel: +49 89 2399 - 8598 or call

GERMANY

EPC 15 885 303.7-1014

Applicant		· · · ·		
Application No. 15 885 307.7 - 1014	Bel. 17763P/EP		Date 16.05.2019	
		_ · _		
			*	
Nether Poppleton, York YO26 6QY ROYAUME-UNI			· · · ·	
Harrison IP Limited 3 Ebor House Millfield Lane		•	+31 (0)70 340 45 00	

Communication under Rule 71(3) EPC

1. Intention to grant

L

Furopäische

European Patent O^{sc}ice

Office europée des brevets

You are informed that the examining division intends to grant a European patent on the basis of the above application, with the text and drawings and the related bibliographic data as indicated below.

A copy of the relevant documents is enclosed.

In the text for the Contracting States: 1.1

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(12)	United States Patent	(10) Pa	atent No.:	US 9,975,156 B2
	Elgressy	(45) Da	ate of Patent:	May 22, 2018
(54)	BREAKDOWN OF FUEL COMPONENTS	(56)	Reference	s Cited

U.S. PATENT DOCUMENTS

5,037,240	A	8/1991	Sherman
5,861,090	A	1/1999	Clarke et al.
		(Con	tinued)

FOREIGN PATENT DOCUMENTS

U\$009975156B2

GB 1399576 A1 7/1975 WO 2012/142435 A2 10/2012 WO

OTHER PUBLICATIONS

Kraft, A., Doped Diamond: A Compact Review on a New, Versatile Electrode Material, Int. J. Electrochem. Sci., May 2, 2007, Issue 5, No. 2, pp. 355-385.

(Continued)

Primary Examiner - Benjamin F Fiorello (74) Attorney, Agent, or Firm - Ted Whitlock

(57) ABSTRACT

A system and method for remediation of polluted sites,

Provectus is the Exclusive Provider in North America and Italy

(*) Notice:

(21) Appl. No.:

(22) PCT Filed:

(86) PCT No.:

(65)

§ 371 (c)(1). (2) Date:

(87) PCT Pub. No.: WO2016/147168

PCT Pub. Date: Sep. 22, 2016

CONTAMINATED SOIL (71) Applicant: Elie Elgressy, Netanya (IL) (72) Inventor: Elie Elgressy, Netanya (IL)

AND SOLVENTS IN GROUNDWATER AND

Subject to any disclaimer, the term of this

U.S.C. 154(b) by 0 days, days.

PCT/IL2015/051175

Prior Publication Data

US 2018/0071800 A1 Mar. 15, 2018

15/559.053

Dec. 3, 2015

Sep. 17, 2017

patent is extended or adjusted under 35

B2

US Patent No. 9,975,156 B2

How Does EBR Work?

The EBR Well Generates Reactive Oxidant Species (ROS)

in a manner similar to other Electro-Fenton's (EF) type systems (Nazari *et al.*, 2019; Rosales, *et.al,* 2012; Sires *et al.*, 2014; Yuan et al., 2013):

Production of O₂: electrolytic reduction of water on a catalytic electrode yields molecular oxygen, O_2

Production of H_2O_2: two-electron reduction of oxygen on a cathode surface generates H_2O_2

Release of Iron: H_2O_2 interacts with ferrous iron (Fe²⁺) released from a third cell to yield hydroperoxyl (HO₂·)/superoxide (O₂·) and hydroxyl radicals (OH·), and likely ferrates

$$\begin{split} &O_2 + 2H^+ + 2e^- \rightarrow H_2O_2 \\ &Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + OH^- \\ &Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2^{\bullet} + H^+ \\ &Fe^{3+} + HO_2^{\bullet} \rightarrow Fe^{2+} + O_2 + H^+ \end{split}$$

How Does EBR Differ From EF?

Fe^{2+/3+} Nanoclusters: <u>At neutral pH</u>EBR uniquely generates "low" Fermi Level (highly oxidized) Fell/III oxyhydroxide nanoclusters (2 nM) as the sacrificial Fe source corrodes within the well (Ai *et al.*, 2013; Elgressy 2019).

Subsurface distribution of Fe nanoclusters throughout aquifer is driven by:

- Equilibration of differences in Fermi level energies self-generated self-propagated
 Redox Fronts and Electro-Fermi level
- Induced redox fronts
- Electro-redox current densities
- Electroosmosis
- Electrophoresis
- Dynamic coupling between EBR wells

How Does EBR Differ From EF?

Fe^{2+/3+} Nanoclusters: A critical and unique feature of the EBR is use of geophysical mechanisms to enhance subsurface distribution of low Fermi level Fe nanoclusters and propagate catalysis *in situ* to continuously generate reactive oxidants throughout its effective ROI.

Electrochemical Potential of an e- is the difference in potential between the oxidized and reduced species (Peljo *et al.,* 2017; Scanlon *et al.,* 2015)

Fermi Level is a thermodynamic "value" to define the electrochemical potential of an electron in a redox couple in solution

At +850mV ("low" Fermi Level electrochemical potential) electrons are essentially freely transferred from Fe³⁺ to Fe²⁺

Scheme 3 Redox equilibria for metallic NPs in solution showing the capabilities of metallic NPs to be (A) charged and (B) discharged upon Fermi level equilibration with an excess of a single dominant redox couple in solution.

Summary of EBR Reactions

- Generation of H₂O₂
- Release of Fe²⁺
- H_2O_2 interacts Fe²⁺ to yield ROS $HO_2 \cdot /O_2 \cdot$ and OH · (ferrate?)
- Release of O₂ and low Fermi Level Fe²⁺/Fe³⁺ nanoclusters
- Self-propagation throughout ROI (less confined by lithology)
- Continuous in situ production of ROS catalyzed by O₂ activation from equilibration of Fermi levels of Fe
- Transition from ISCO to bioremediation (using oxygen and iron as electron acceptors)
- Process controlled remotely with real-time monitoring

Where has it been Used?

- In 2019 Israel had 35 gas stations undergoing active remediation
- ♦ EBR technology was employed at 14 (40%) + 2 chlorinated solvent sites
- Today, 7 sites are in clean-closure monitoring after 1 year of operation
- EBR is ISO-certified and approved by the Israeli Water Authority
- No PRB Applications. No USA applications.

Case Study – Neve Tzedik Site

Operating Gasoline Station

- ♦ Groundwater at 7 to 8 m bgs
- sandy aquifer with si cl lenses
- ♦ MTBE >50 mg/L; TPH >100 mg/L
- ♦ 242 m² impacted area

Depth (m)	Description of strata	Legend	Monitoring Well
0.0 	Ground Surface Fill-Sand with coarse gravel Fine-Sand	/	tonite
- -5.0 -	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.		
	Poorly-graded sands, gravelly sands,		
-10.0	Sandstone		Filter pack

5 EBR/SVE Systems (2017)

Monitoring wells

GW field parameters (ORP)

Soil / Groundwater TPH (18 mo)

Soil / Groundwater MTBE (18 mo)

Provectus Environmental Products

- Complimentary Site Evaluation
- Complimentary review of quarterly field performance data with every project
- Laboratory Treatability Studies
- Turn-Key, Pay-for-Performance Contracting Options
- Project Specific Guarantees and Warranties

- USA (Illinois, New Jersey, Ohio, Pennsylvania)
- Australia, Brazil, China, Colombia, Israel, Italy, Spain and Taiwan

Contact Information

Thank You!

www.provectusenvironmental.com

Troy Lizer <u>troy.lizer@provectusenv.com</u> 330.284.7428

