

Superoxide Radical as a Green Reagent and an Ultimate Solution for Soil and Water Contamination

Uri Stoin, Ph.D., Chief R&D, Alpha Cleantec AG

About Us

Alpha Cleantec AG ("ACT") was founded in 2016 as an environmental technology company.

• The Team:

Our experts are bringing in depth knowledge and experience in the fields of optimization of the chemical process, scale-up, advanced oxidation process, green chemistry, and environmental technologies.

Our Vision: •

Is to provide safe, green, rapid, efficient and cost-effective technologies to resolve environmental harms and hazards caused by inadequate human and industrial activities.

Our Technologies:

Have been developed in collaboration with well-known experts and specialists and with support from the Casali Institute of Applied Chemistry, the Hebrew University of Jerusalem, Israel, which is one of the leading research centers in the field of applied chemistry.

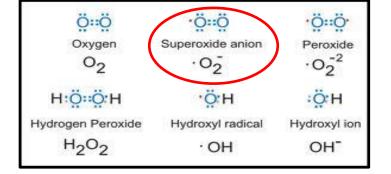
Our Team

Prof. Dr. Yoel Sasson Consultant Environmental Chemistry ACT Switzerland

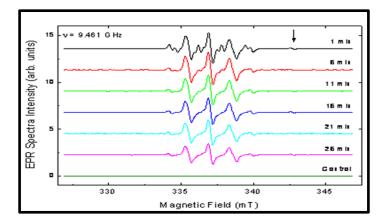
Dr. Uri Stoin Chief of R&D

Mathias Schmid Stock Exchange Expert, Board Member ACT Switzerland

Andreas Danner Degreed Merchant Finance & Controlling ACT Germany



Hansjörg Plaggemars Degreed Merchant Member of Directorate ACT Germany


Alpha Cleantec AG Private & Confidential

Our Technologies

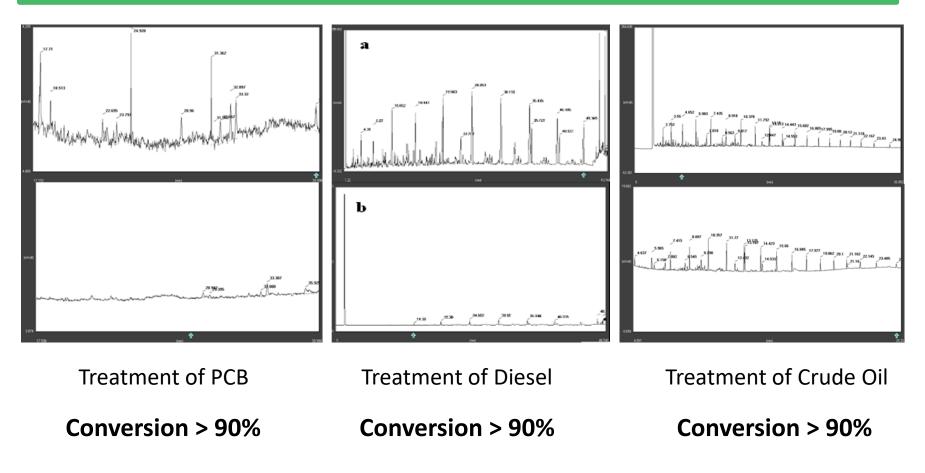
- ACT team in cooperation with the Casali ٠ Institute of Applied Chemistry of Jerusalem have developed innovative environmentalfriendly super-oxidation processes AFA, SOA, **RBO and WWO**.
- Our technologies are based on chemical ٠ oxidation of contaminants by highly efficient oxygen radicals as superoxide radical and hydroxyl radical.
- Superoxide is well known as a by-product of ٠ metabolic processes and hydroxyl radical is known as a strong agent at Fenton and photocatalytic processes.
- Our technologies allow fast and efficient decomposition and mineralization of hydrocarbon-based contaminants.

$$C_{x}H_{y} + NaO_{2} \rightarrow Na_{2}CO_{3} + H_{2}O + 1.5O_{2}$$
$$HC + H_{2}O_{2} \xrightarrow{Cat./Fe^{2+}} CO_{2} + O_{2} + H_{2}O$$

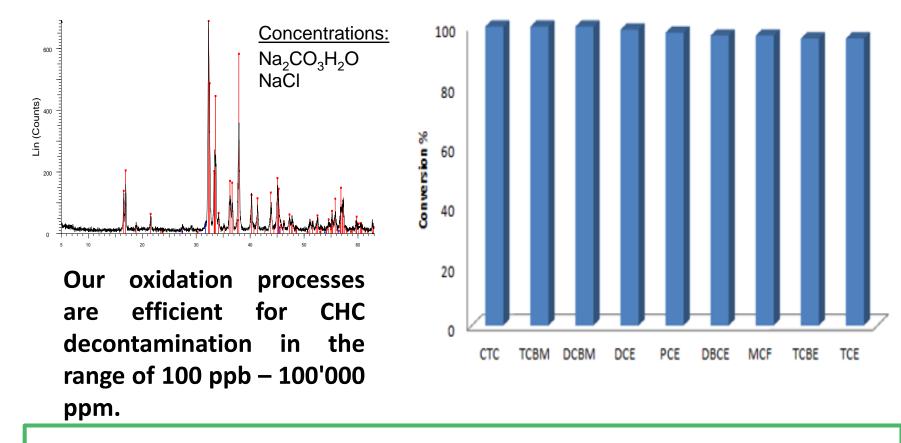
Our Technologies

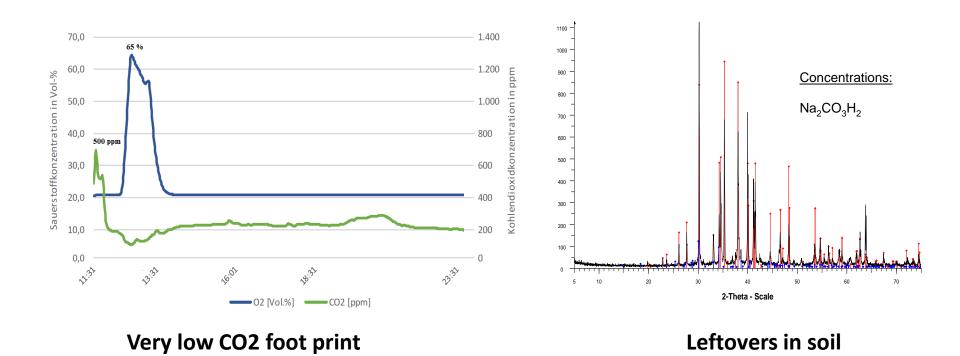
Our technologies are based on *in-situ* synthetic generation of concentrated and stable superoxide radicals.

Range of Treatable Contaminants


- ACT processes can efficiently treat a wide range of contaminants from *petroleum hydrocarbons*, *chlorinated solvents*, to *cosmetic and pharmaceutical industries leftovers* and byproducts.
- Our technologies can be applied as in-situ, exsitu and on-site processes.
- Our processes show amazing results in comparison to the existing solutions.
- Our technologies are efficient and environmental friendly as proven by independent laboratory tests.

CONTAMINANTS	SOA	AFA
BTEX		
Benzene	•	•
Toluene	•	•
Ethylbenzene	•	•
Xylene	•	•
PETROLEUM HYDROCARBONS		
Gasoline Range Organics (GRO)	•	•
Diesel Range Organics (DRO)	•	•
Oil Range Organics (ORO)	•	•
AROMATICS		
Chlorobenzene	+	•
Bromobenzene	•	•
Dichlorobenzene	+	•
Nitrobenzene	•	
Phenol	•	
Styrene	+	•
Naphthalene	•	•
Trichlorobenzene	•	
Trimethylbenzene	•	•
PAHS		
Phenathrene	+	•
Naphthalene	•	
Acenaphthylene	•	
CHLORINATED SOLVENTS		
Tetrachloroethylene	+	
Trichloroethene	•	•
Dichloroethene	+	•
Vinyl chloride	•	
Tetrachloroethane	•	•
Trichloroethane	•	
Dichloroethane	•	•
Dibromochloroethane	+	•
Bromodichloromethane	•	
Carbon tetrachloride	•	•
Chloroethane	+	•
Chloroform	•	•
Chloromethane	•	•
Chlorotoluene	•	•
Methylene chloride	•	
PCBS	•	•
DIOXINS	•	•
PESTICIDES AND HERBICIDES		
Glyphosate	•	
Goal	•	


Efficiency of Soil Treatment



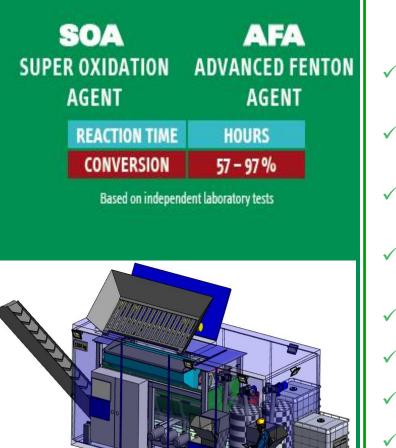
Our oxidation processes are efficient for hydrocarbons decontamination in the range of 0.1 - 100'000 ppm.

$$C_2HCl_3 + 6NaO_2 \rightarrow Na_2CO_3 + NaHCO_3 + 3NaCl + 3O_2$$

Soil Treatment - End Products

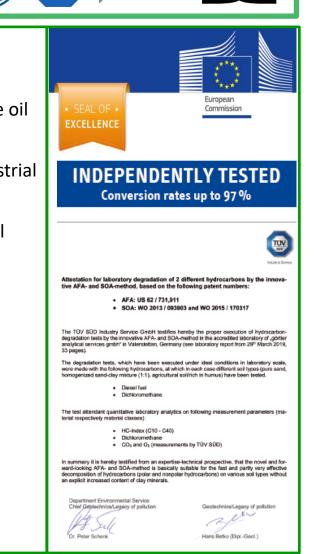
The technologies are not damaging the soil matrix and quality. Our materials are not generating dangerous leftovers in the groundwater.

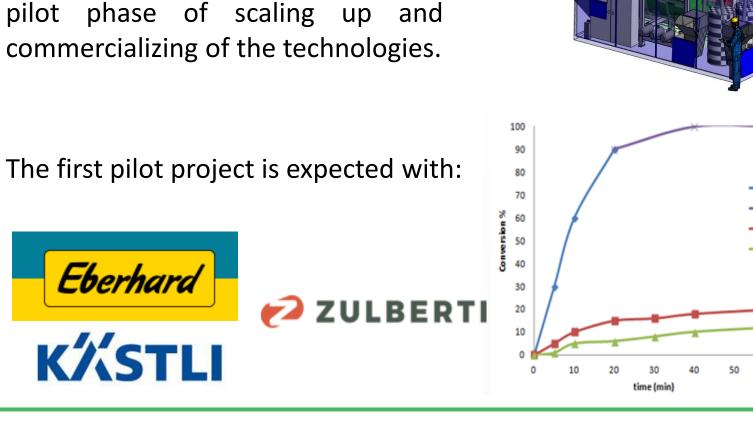
Soil Treatment – ACT vs. Common Market Solutions



Treatment Type	Treatment Time	Einvironmental Disruption	Hazardous Reagents	Production of Harm By-Products	Temperature Requirement	Problematic Contaminants	Conversion (%)
Thermal / Vapor	Hours	High	None	Air Contamination	High	None	> 99%
Bioremediation	Months / Years	Low	None	Low	Warm Climate	Heavy HC	> 70%
ISCO Permangante Persulfate	Nonths / Weeks	Low	Yes	Low	High	PCB / PCDD/DF	> 85%
ISCO Ozone	Nonths / Weeks	Low	Yes	Low	High	None	< 90%
ISCO Fenton	Aonths / Weeks	Low	Yes	Low	High	PCB / PCDD/DF	< 90%
Soil Washing	Hours	Low	None	None	> 10°C	Heavy HC	95%
Thermal Desorption	Hours	High	None	Air Contamination	High	PCDD/DF	> 99%
Landfill	No Treatment	High	None	Contaminants Remain	None	All	0%
Incineration	Hours	High	Explosion Danger	Air Contamination	High	PCDD/DF	99%
AFA	Hours / Days	Low	Yes	Low	> 10°C	PCD/DF	> 95%
SOA	Hours	Low	Yes	Low	> 10°C	None	> 95%

Soil Treatment




THE HEBREW UNIVERSITY OF JERUSALEM

Applications

- Treatment of crude oil spills.
- Factories and industrial zones.
- Historical industrial areas.
 - Industrial waste landfills.
 - Refineries.
 - Military bases.
- Gasoline stations
- Private and public service stations.

the

Soil Treatment - Future Pilot Projects

laboratory stage for AFA and SOA

technologies and is currently in the

✓ ACT has accomplished

60

SOA

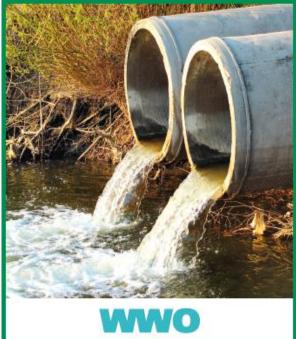
sodium persulfate

References and Pilot Projects

к [⁄] ́х	STLI
and the second	and the second second second

Contamination	Contamination Level (ppm mg/kg)	Required Level for soil type B (ppm mg/kg)	After treatment (ppm mg/kg)
C10-C40	1020	500	492-517*
PAH	780	25	48-51*

*Depends on the treatment procedure.


Contamination	Contamination Level (ppm mg/kg)	Required Level for soil type B (ppm mg/kg)	After treatment (ppm mg/kg)
C10-C40	1500	500	65-400*
PAH	40	25	10-35

*Depends on the treatment procedure.

Wastewater Treatment

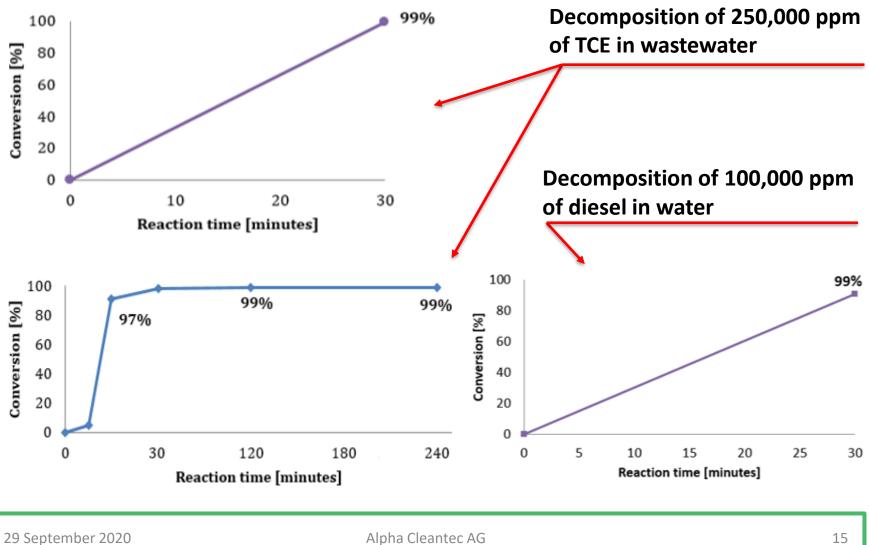
WASTEWATER TREATMENT

PHYSICO CHEMICAL OXIDATION PROCESS

CONVERSION	80 - 97 %
REACTION TIME	HOURS

Based on tests in our laboratory

Decomposition of NAPLs and Dissolved Organic Materials



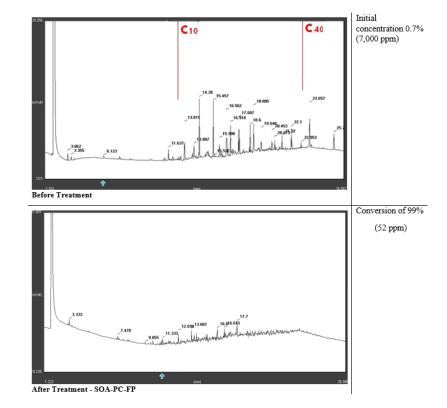
	Initial Concentration	Treatment Time	Final Concentration	Decomposition
	(ppm)	(min)	(ppm)	(%)
Dichloroethane	850	10	0	100
Carbon tetrachloride	800	10	0	100
Toluene	500	10	5	99
Chlorobenzene	500	10	9	98
Xylene	100	10	1	99
Naphthalene	30	10	0	100
Rhodamin B	1000	11	2	99
Rhodamin B	125	2	0.16	99
Carbamazepine	100	10	10	90
E- coli	3*107 (CFU/ml)	10	0 (CFU/ml)	100
	Carbon tetrachloride Toluene Chlorobenzene Xylene Naphthalene Rhodamin B Rhodamin B Carbamazepine	Dichloroethane850Carbon tetrachloride800Toluene500Chlorobenzene500Xylene100Naphthalene30Rhodamin B1000Rhodamin B125Carbamazepine100	Dichloroethane85010Carbon tetrachloride80010Toluene50010Chlorobenzene50010Xylene10010Naphthalene3010Rhodamin B1252Carbamazepine10010	Dichloroethane 850 10 0 Carbon tetrachloride 800 10 0 Toluene 500 10 5 Chlorobenzene 500 10 9 Xylene 100 10 1 Naphthalene 30 10 0 Rhodamin B 125 2 0.16 Carbamazepine 100 10 10

29 September 2020

Wastewater Treatment

15

ELECTRE GREENTECH 💋 ZULBERTI

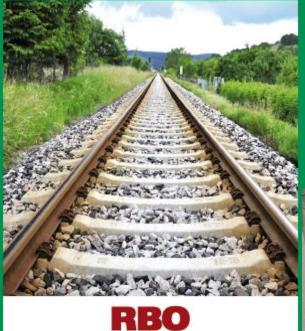

CONSIDER IT DONE

Wastewater Treatment

✓ ACT has accomplished the laboratory stage for AFA and SOA technologies and is currently in the pilot phase of scaling up and commercializing of the technologies.

Superoxide/Hydroxyl Ð Clean water

The first pilot project is expected with:



Railway Ballast Treatment

THE HEBREW UNIVERSITY DF JERUSALEM

RAILWAY BALLAST TREATMENT

REO PHYSICO CHEMICAL OXIDATION PROCESS

REACTION TIME	HOURS
CONVERSION	70 – 80 %

Based on tests in our laboratory

Based on the synthetic generation of highly concentrated superoxide radical with surfactants and phase transfer catalysts.

Our Technology – Independently Tested

Industrie Service

Attestation for laboratory degradation of different chemicals in railway ballast by the innovative SOA-method, based on the following patent numbers: SOA: WO 2013 / 093903 and WO 2015 / 170317

The TÜV SÜD Industry Service GmbH testifies hereby the proper execution of chemical degradation tests by the innovative SOA-method in the accredited laboratory of "görtler analytical services gmbh" in Vaterstetten, Germany (see laboratory report from 27 th August 2019). The degradation tests, which have been executed under ideal conditions in laboratory scale, with different soil types and layers (track ballast, pure sand, agricultural soil/rich in humus) and testing of percolate water which had been contaminated prior with:

Diesel fuel
Used oil
Glyphosate

The analytical laboratory tests have been carried out measuring the following parameters:

·+	IC-Index (C10 - C40)
	PAH
• 0	Slyphosate/AMPA
• p	H
• E	lectric conductivity
• D	OCC (Dissolved Organic Carbon)
• D	Dry residue

As a result, the technology showed high conversion rates for different treatment layers. Railway ballast (first layer): conversion up to 81% for oil and diesel leftovers and conversion of 93% for glyphosate decomposition. Railway sand (second layer): conversion up to 56% for oil and diesel leftovers and conversion rate of 94% for glyphosate decomposition. Railway groundwater (lowest layer): the conversion of oil and diesel leftovers was not measured. However, in this layer, the methodology reached a conversion of 99 % for glyphosate leftovers decomposition. These conversion rates were reached after single ballast treatment under normal temperature and pressure conditions with short treatment time. In summary it is hereby testified from an expertise-technical prospective, that the novel and forward-looking SOA-method is basically suitable for the fast and partly very effective decomposition of hydrocarbons and herbicide on track ballast and percolate water.

Department Environmental Service Chief Geotechnics/Legacy of pollution

Schenk

Munich, 10 September 2019

Geotechnics/Legacy of pollution

Hans Betko (Dipl.-Geol.)

	Railway	Railway	Railway
	ballast	sand	ground water
	Conv.	Conv.	Conv.
	(%)	(%)	(%)
Oil and Diesel	81	56	
Glyphosate	93	94	99

Alpha Cleantec AG Private & Confidential

THANK YOU FOR YOUR ATTENTION!

ALPHA CLEANTEC AG

Phone: +49 (0) 6221 64924 0 Fax: +49 (0) 6221 64924 24 info@alphacleantec.com www.alphacleantec.com

