

Session 14: Effluents and wastewaters:

Challenges in managing odors and micropollutants

Synergetic Effect on gamma radiolytic degradation of

micropollutants by addition of H_2O_2 towards radical based study

Dr. V.C.Padmanaban

Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Tamilnadu, India. <u>http://padmanaban.mozello.com/</u>

MADURAI TAMILNADU STATE

Advanced oxidation processes

Sources used in gamma irradiation

Parameters	Cobalt-60	Caesium-137		
Power Output (W/Ci)	3.35 x 10 ⁻³	9.48 x 10 ⁻³		
Photon Energy (MeV)	n Energy (MeV) 1.33 & 1.17			
Half Life	5.25	30.2		
Chemical form	Sintered metal	CsCl ₂		
Water Solubility	Insoluble	Soluble		
Nature of activity	 ⁶⁰Co decays by emitting a beta particle to the stable isotope nickel- 60 (⁶⁰Ni). The activated nickel nucleus emits two gamma rays with energies of 1.17 and 1.33 MeV. 	 ¹³⁷Cs decays by emitting high-energy beta decay to an excited nuclear isomer of ¹³⁷Ba, which in turn undergoes gamma decay with a half- life of about 150 seconds. The energy of the gamma decay is 0.66 MeV 		

Radiolytic Chemistry

The initial events in the radiolysis of water involves two step reaction,

- (i) the direct ionization leads to the formation of water in its radical form and a free excited electron,
- (ii) the transfer of energy excites the water molecule,

$$H_2 O \xrightarrow{\gamma} H_2 O + e^{-\gamma}$$

$$H_2 \boldsymbol{O} \xrightarrow{\boldsymbol{\gamma}} H_2 \boldsymbol{O}^*$$

The above three species reacts with each other and other molecules to produce secondary species. It involves four important reactions,

- (i) through dipolar interactions, water reacts with electrons and become solvated electron
- (ii) interaction of electron with hydrogen to produce hydrogen radical,
- (iii) dissociation of radical water to hydrogen ion and hydroxyl radical,
- (iv) dissociation of excited water molecule to hydroxyl and hydrogen radicals.

$$e^{-} + H_2 O \rightarrow e_{aq}^{-}$$

$$e^{-} + H^+ \rightarrow H^+$$

$$H_2 O^{+} \rightarrow H^+ + H O^+$$

$$H_2 O^{*} \rightarrow H O^+ + H^-$$

The radiolysis of water leads to the generation of radicals as shown in the equation,

$H_2O \rightarrow e_{aq}^- + H^- + OH^- + H_2 + H_2O_2 + H_3O^+$

$OH^{\cdot} + Dye \rightarrow Mineralisation$

Species	Oxidation Potential (V)		
Fluorine	3.03		
Hydroxyl radical	2.80		
Hydrogen Peroxide	1.78		
Permanganate	1.68		
Hypochlorous acid	1.49		

6

Degradation of Azo dyes Design Summary - Face Centered Central Composite Design

Response Surface: Face Centered Central Composite Design							
		20 Runs		No Blocks			
Factor	Name	Units	Type	Low Actual	High	Mean	Std. dev.
					Actual		
А	pН	-	Numeric	3	11	7	2.828
В	Dose of gamma Ray	kGy	Numeric	1	6	3.5	1.768
С	Conc. Of Dye	mg/L	Numeric	100	500	300	141.421
С	Conc. Of Ofx	mM	Numeric	0.1	1	0.5	0.16
Response	Name	Units		Min.	Max.	Ratio	Model
Y ₁	Concentration of RO16 Dye Degraded	mg/L		36.120	348.300	9.643	Sq.Rt -Quadratic
Y ₂	Concentration of RR120 Dye Degraded	mg/L		41.780	318.350	7.620	Base ₁₀ log Quadratic
Y ₃	Concentration of DR80 Dye Degraded	mg/L		54.690	359.150	6.567	Base ₁₀ log Quadratic
Y ₄	Conc. of Ofx degraded	mM		0.2	0.84	0.22	Base ₁₀ log Quadratic

A plot of the actual vs predicted degradation and residual plots. The response surface plot (a) and the contour plot (b) of the degradation of RO-16 as the function of pH and concentration of dye (mg/L). Dose of γ - irradiation = 3.5kGy

A plot of the actual vs predicted degradation and residual plots. The response surface plot (a) and the contour plot (b) of the degradation of RR-120 as the function of pH and concentration of dye (mg/L). Dose of γ - irradiation = 3.5kGy 10

Padmanaban et al Reaction Kinetics, Mechanisms and Catalysis 125, no. 1 (2018): 433-447.

A plot of the actual vs predicted degradation and residual plots. The response surface plot (a) and the contour plot (b) of the degradation of DR 80 as the function of pH and concentration of dye (mg/L). Dose of γ - irradiation = 3.5kGy

A plot of the actual vs predicted degradation and residual plots. The response surface plot (a) and the contour plot (b) of the degradation of Ofx as the function of pH and concentration of Ofx (mM). Dose of γ - irradiation = 3.5kGy 12

Optimized numerical solutions for the maximum degradation (500mg/L) of Textile dyes & 1mM of Ofloxacin using the developed model

Sl.No	Type of dye	рН	Dose of γ- irradiation (kGy)	Concentration of dye degraded in Transformed Scale	Predicted Conc. Of dye degraded (mg/L)	Experimental Conc. Of dye degraded (mg/L)
1	Reactive Orange - 16 (RO - 16)	6.00	4.00	Sqrt (16.302)	279.861	282.34
2	Reactive Red – 120 (RR - 120)	7.02	5.93	Log ₁₀ (2.539)	347.509	349.12
3	Direct Red – 80 (DR - 80)	6.64	3.29	Log ₁₀ (2.5177)	329.5	314.15
4	Ofloxacin (Ofx)	3.00	2.09	Log ₁₀ (-0.535)	0.292	0.281

Synergetic Effect on degradation of dye by addition of H_2O_2

$H_{2}O \rightarrow (0.27)e_{aq}^{-} + (0.06)H^{\cdot} + (0.27)OH^{\cdot} + (0.04)H_{2} + (0.07)H_{2}O_{2} + (0.27)H_{3}O^{+}$

The **G value** is referred as the number of molecules of reactant consumed or product formed per 100 eV of energy absorbed.

The energy efficiency of dye degradation during ionizing radiation in terms of G value is calculated by,

$$G = 6.023 * 10^{23} * \frac{\Delta R_D}{D} * 6.24 * 10^{19}$$

where,

 ΔR_D is the changed amount of the compound (mol/L); D is the absorbed dose (kGy);

 $6.24*10^{19}$ is a conversion constant for kGy to 100 eV/L; $6.023*10^{23}$ is the Avogadro constant.

 $H_2O \rightarrow (0.27)e_{aq}^- + (0.06)H^+ + (0.27)OH^+ + (0.04)H_2 + (0.07)H_2O_2 + (0.27)H_3O^+$

Reducing species (e_{aq}^{-} & H[·]) can be converted into Oxidizing species (OH[·]) by the addition of H₂O₂

$$H_2O_2 + e_{aq}^- \rightarrow OH^- + OH^-$$
$$H_2O_2 + H^- \rightarrow H_2O + OH^-$$

16

6

0.2498

0.3620

0.7145

0.9321

0.7202

Synergetic Effect on degradation of pollutant by addition of H_2O_2

Reaction Conditions:

0.70

0.77

0.87

0.83

0.74

absorbed

molecules/100eV

energy)

G value (Removed

1.00

0.80

0.60

0.40

0.20

0.00

±0mM

≋1mM

∷ 2mM

20.5mM

±1.5mM

Initial dye concentration: 250mg/L & 1mM; Dose rate: 2.5kGy/h; pH: 6.6) Various Dose of gamma ray & Concentration of H₂O₂

2

0.53

0.60

0.64

0.62

0.58

3

0.42

0.44

0.47

0.46

0.43

Direct Red 80

Dose of gamma ray (kGy)

Comparison of kinetic parameters for the removal of different recalcitrant at various concentrations of H₂O₂

Type of recalcitrant	Initial H ₂ O ₂ Concentration (mM)	Dose constant, d (kGy ⁻¹)	Conc. Removed (kGy ⁻¹)	Ref.
p - Nitro Phenol (PNP)	0.5	0.4332	21.66 mg/L	Yu S, Hu J, Wang
Conc: 50mg/L	1.17	0.5725	28.625 mg/L	J (2017)
Dose rate: 185Gy/min	2.35	0.702	35.1 mg/L	
Sulfamethazine	0.294	0.0036	0.072 mg/L	Lin V Wang I
Conc: 20mg/L; Dose rate: 339Gy/min	0.882	0.0045	0.09 mg/L	(2019)
	0	0.4022	100.55 mg/L	
Direct Red 80	0.5	0.4659	116.47 mg/L	
Conc: 250mg/L	1	0.6347	158.67 mg/L	
Dose rate: 2.5kGy/h (41.66Gy/min)	1.5	0.5402	135.0 mg/L	
	2	0.4273	106.82 mg/L	
	0	0.1157	0.1157 mM	Current study
Ofloxacin	0.5	0.1594	0.1594 mM	
Conc. of $Ofx = 1mM (361.6mg/L)$.	1	0.1985	0.1985 mM	
Dose rate: 1.72kGy/h (28.66Gy/min)	1.5	0.232	0.232 mM.	
	2	0.1568	0.1568 mM	

Artificial Neural Network Based Modelling: Parameters

Layers	Parameters	Conditions		
	Concentration of H_2O_2 (mM)	0 (control)		
Input		0.5 - 2.0		
	Dose of gamma ray (kGy)	1,2,3,4,5,6		
	pH	3.0, 5.0, 7.0, 9.0 11.0		
	Concentration of dye (mg/L)	100 - 500		
Output	Response	% of degradation		
	Test & Validation	pH: 6.0 & 12.0		

Three layer feed-forward network was trained using Levenberg - Marquardt back propagation algorithm with ten neurons in the hidden layer.

Optimization of neurons number

$$MSE = \frac{1}{Q} \sum_{i=1}^{i=Q} (y_{i,pred} - y_{i,exp})^2$$

Q is the number of data point, $y_{i,pred}$ = prediction through network, $y_{i,exp}$ = experimental response and i is an index of data.

19

Mono azo Dye: Reactive Orange 16

Sensitivity analysis - Relative importance of the input variables Garson equation

$$Ij = \frac{\sum_{m=1}^{m=Nh}((|w_{jm}^{ih}|/\sum_{k=1}^{Ni}|w_{km}^{ih}|) \times |w_{mn}^{ho}|}{\sum_{k=1}^{k=Ni} \sum_{m=1}^{m=Nh}((|w_{jm}^{ih}|/\sum_{k=1}^{Ni}|w_{km}^{ih}|) \times |w_{mn}^{ho}|}$$

 I_j is the relative importance of the j^{th} input variable on the output variable, N_i and N_h are the number of input and hidden neurons, respectively and W is connection weight,

'i', 'h' and *'o'* refers to input, hidden and output layers, respectively and *'k', 'm'* and *'n'* refers to input, hidden and output neurons respectively

Relative importance of input variables for the degradation of reactive dyes.

	Relative Importance %				
Input variables	RO 16 -	RR 120 –	DR 80 -		
	Mono azo	Di azo	Poly azo		
Conc. of H_2O_2 (mM)	28.75	20.47	39.49		
Dose of gamma ray (kGy)	62.94	34.33	54.31		
pН	7.74	17.43	5.24		
Concentration of dye (mg/L)	0.57	27.77	0.96		
Total	100	100	100		

V C Padmanaban et al Desalination and Water Treatment 131 (2018): 343-350.

Acknowledgement: Funding Agencies & Collaborating Institutions

Young Scientist Research Grant,

BRNS - BARC, Mumbai.

Dr.V.N.Vasudevan & team, KVASU, Thrissur

Dr.N.Selvaraju & team, NIT Calicut

V.C.Padmanaban M.Tech., Ph.D

<u>vcpadmanaban88@gmail.com;</u> <u>https://www.researchgate.net/profile/V_C_Padmanaban</u> \$\$\\$\\$+91-9894800751